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Learning objectives

After this lecture, you should be able to:

1. explain the concept of Euclidean space (n-space);

2. perform operations on vectors such as addition and
multiplication;

3. explain the geometric interpretation of linear combination of
vectors;

4. explain the concept of linear independence of vectors;

5. implement properties of vectors operations in Rn to problem
solving.
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Part 1: Vector Space
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What is an n-space?
Recall our previous discussion...

• An ordered n-tuple is a sequence of real numbers: (a1, a2, . . . , an)
(or, can be seen as a vector).

• An n-space is a set of all n-tuples of real numbers. Usually denoted
as Rn. For n = 1, R1 ≡ R.

• This space is where vectors are defined

• The n-space Rn is also called Euclidean space.

Example:

Vector in R2

y

x

~u

(u1, u2)

Vector in R3

z

y

~u

(u1, u2, u3)
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Vectors in n-space

• An n-tuple in Rn, e.g. u = (u1, u2, . . . , un) is called a point or
a vector.

• The numbers ui are called coordinates, components, entries,
or elements of u.

• When referring to Rn, an element of R is called scalar.

• The vector (0, 0, . . . , 0) is called zero vector.
• Example: the zero vector in R2 is (0, 0), and the zero vector

in R3 is (0, 0, 0)

• Vectors u and v are equal if they have the same number of
components, and the corresponding components are equal.
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Row vectors and column vectors

A vector in Rn can be written horizontally (this is called row
vector) or vertically (called column vector).

u = [a1, a2, . . . , an]
u =


a1
a2
...
a3


Note: any operation defined for row vectors is defined analogously
for column vectors. From now on, vectors are often written as row
vectors.
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Part 2: Vectors Operations
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Vectors addition and scalar multiplication

Let u and v be vectors in Rn, say:

u = (a1, a2, . . . , an) and v = (b1, b2, . . . , bn)

The sum u + v is defined as:

u + v = (a1 + b1, a2 + b2, . . . , an + bn)

If k ∈ R, the scalar product or product ku is defined as:

ku = k(a1, a2, . . . , an) = (ka1, ka2, . . . , kan)

The negative and subtraction (the difference of u and v) are defined as:

−u = (−1)u and u − v = u + (−v)

Note: u + v , ku, −u, u − v are also vectors in Rn.
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The zero vector and one vector

The zero vector 0 = (0, 0, . . . , 0) and the one vector
1 = (1, 1, . . . , 1) in Rn are similar to the scalar 0 and 1 in R.

• For a vector u = (a1, a2, . . . , an), then:

u + 0 = (a1 + 0, a2 + 0, . . . , an + 0) = (a1, a2, . . . , an) = u

1u = 1(a1, a2, . . . , an) = (a1, a2, . . . , an) = u
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Part 3: Linear Combination of
Vectors
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Linear combination

Given vectors u1, u2, . . . , un ∈ Rn and scalars k1, k2, . . . , kn ∈ R,
we can form a new vector:

v = k1u1 + k2u2 + · · ·+ kmum

This vector is called a linear combination of the vectors
u1, u2, . . . , um.

How do you explain linear combination of vectors geomet-
rically?
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Example

1. Let u = (2, 4,−5) and v = (1,−6, 9), then:

u + v = (2 + 1, 4 + (−6),−5 + 9) = (3,−2, 4)

4u = (8, 14,−20)

−v = (−1, 6,−9)

3u − 2v = (6, 12,−15) + (−2, 12,−18)

2. Let u =

 2
3
−4

 and v =

 3
−1
−2

, then:

2u − 3v =

 4
6
−8

+

−9
3
6

 =

−5
9
−2


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Geometric interpretation of linear combination

How would you interpret linear combination of vectors
geometrically?

See it as a combination of scaling and moving vectors in a space

Example

Given a vector ~u = [3/4] and ~v = [−2/1]. How do you explain 2~u + 3~v ?

~v = [−2 1]

~u = [3 4]

x

y

x

2~u = [6 8]

3~v = [−6 3]

y

x

2~u = [6 8]

3~v = [−6 3]

y

2~u + 3~v
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Geometric interpretation of linear combination

[1 0] and [0 1] are “special vectors” in the 2D-space. Can you
guess why?

Every vector u in R2 can be represented as a linear combination of
vectors x1 = [1 0] and x2 = [0 1], i.e.:

For every u ∈ R2, there exist a constant c1, c2 ∈ R such
that u = c1x1 + c2x2.

In particular, if u = [a1 a2] then u = a1x1 + a2x2.

Example

[4 3] = 4[1 0] + 3[0 1]

• What are the special vectors in the 3D-space?

• What about the nD-space?
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Geometric interpretation of linear combination

The set

{xi , i ∈ {1, 2, . . . , n} | xi = (0, . . . , 0, 1, 0, . . . , 0) 1 is at the i-th position}

is the set of special vectors in the n-space. (In the previous slide,
we denote them by e1, e2, . . . , en.)

So any vector u = (a1, a2, . . . , an) can be written as:

u = a1x1 + a2x2 + · · ·+ anxn

We say that {x1, x2, . . . , xn} spans Rn.

A more formal definition will be discussed later.
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Part 4: Linear Independence
of Vectors
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Linear independence

Given a system: 1 2 −3
3 5 9
5 9 3

x1x2
x3

 =

0
0
0


The system can be written as a vector equation:

x1

1
3
5

+ x2

2
5
9

+ x3

−3
9
3

 =

0
0
0


The vector equation has the trivial solution:

x1 = 0, x2 = 0, x3 = 0

Is there any other solution?
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Linear independence

Definition (Linear independence)
A set of vectors {v1, v2, . . . , vp} ∈ Rn is said to be linearly independent if
the vector equation:

x1v1 + x2v2 + · · ·+ xpvp = 0

has only the trivial solution.

Definition
The set {v1, v2, . . . , vp} ∈ Rn is said to be linearly dependent if there
exists c1, c2, . . . , cn ∈ Rn which are not all 0, s.t.

c1v1 + c2v2 + · · ·+ cpvp = 0

Simply saying, two vectors are linearly independent if none of them can

be expressed as a linear combination of the others.
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Example of linear independence of vectors

Let v1 =

1
3
5

, v2 =

2
5
9

, v3 =

−3
9
3

.

• Determine whether {v1, v2, v3} is linearly independent.

Solution:

Solve the system:

x1

1
3
5

+ x2

2
5
9

+ x3

−3
9
3

 =

0
0
0


We can perform elementary row operations on the augmented matrix:1 2 −3 0

3 5 9 0
5 9 3 0

 ∼
1 2 −3 0

0 −1 18 0
0 −1 18 0

 ∼
1 2 −3 0

0 −1 18 0
0 0 0 0


What can you conclude?
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Example of linear dependence of vectors

Given v1 =

1
3
5

, v2 =

2
5
9

, v3 =

−3
9
3

. We have relation:

−33

1
3
5

+ 18

2
5
9

+ 1

−3
9
3

 =

0
0
0


or equivalently, 1 2 −3

3 5 9
5 9 3

−33
18
1

 =

0
0
0


Each linear dependence relation among the columns of A
corresponds to a nontrivial solution to Ax = 0.
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Exercise 1

Determine the linear independence of the following set of vectors:

1. {v1} =

{[
1
2

]}
2. {u1,u2} =

{[
2
1

]
,

[
4
2

]}
3. {v1, v2} =

{[
2
1

]
,

[
2
3

]}
Solution:
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Conclusion

How to check that a set containing one vector is linearly
independent?

Answer: {v1} is linearly independent when v1 6= 0

How to check that a set containing two vectors is linearly
independent?

Answer:

• {v1, v2} is linearly dependent if at least one vector is a
multiple of the other;

• {v1, v2} is linearly independent if and only if neither of the
vectors is a multiple of the other.
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Part 5: Numerical
Computations of Vectors in Rn
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Properties of vectors under operations

Theorem
For any vectors u, v,w ∈ Rn and any scalars k , k ′ ∈ R,

1. (u + v) + w = u + (v + w) (associative)

2. u + 0 = u (identity elt w.r.t. addition)

3. u + (−u) = 0 (two opposite vectors)

4. u + v = v + u (commutative)

5. k(u + v) = ku + kv (distributive w.r.t. scalar mult.)

6. (k + k ′)u = ku + k ′u

7. (kk ′)u = k(k ′u)

8. 1u = u (identity elt w.r.t. multiplication)

Note: Suppose u and v are vectors in Rn, and u = kv for some
k ∈ R. Then u is called the multiple of v. If k > 0, then u and v
have the same direction, and if k < 0, then they are in opposite
direction.
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Exercise
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to be continued...
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